Range Minimum Queries
Part Two



Recap from Last Time



The RMQ Problem

« The Range Minimum Query (RMQ)
problem is the following:

Given a fixed array A and two indices

I < j, what is the smallest element out of
Ali], Ali + 1], ..., Alj - 1], A[j]?

~I
31 41 59, 26 53 58 97 93
]




Some Notation

 We'll say that an RMQ data structure has time
complexity {(p(n), q(n)) if

* preprocessing takes time at most p(n) and
* queries take time at most qg(n).

« Last time, we saw structures with the following
runtimes:

O(n?), O(1)) (full preprocessing)

(n log n), O(1)) (sparse table)

O(n), O(n'?)) (blocking)
O(n), O(log n)) (hybrid approach)

(
(O
 (O(n log log n), O(1)) (hybrid approach)
(
(
(O(n), O(log log n)) (hybrid approach)



The Framework

« Split the input into blocks of size b.

 Form an array of the block minima.

* Construct a “summary” RMQ structure over the block minima.
 Construct “block” RMQ structures for each block.

 Aggregate the results together.

Summary
RMQ
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31 1 41 59|26 53 58|97 93 23|84 62 64| 33 83 | 27
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The Framework

 Suppose we use a (pi(n), gi(n))-time RMQ solution
for the summary and a (pz(n), gz(n))-time RMQ
solution within each block. Let the block size be b.

* In the hybrid structure, the preprocessing time is

O(n + pa(n/ b) + (n/ b) p2(b))
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The Framework

 Suppose we use a (pi(n), gqi(n))-time RMQ solution
for the summary and a (pz(n), gz(n))-time RMQ
solution within each block. Let the block size be b.

* In the hybrid structure, the query time is

0O(q1(n / b) + q=(b))

Summary
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Is there an (O(n), O(1)) solution to RMQ?

Yes!



New Stuff!



An Observation



The Limits of Hybrids

* The preprocessing time on a hybrid structure is
O(n + pi(n/ b) + (n/ b) p2(b)).
 The query time is
O(qi(n / b) + qz(b)).



The Limits of Hybrids

 The preprocessing time on a hybrid structure is
O(n + pi(n/ b) + (n/ b) p2(b)).
 The query time is
O(qi(n / b) + qz(b)).

« What do pz2(b) and gz2(b) need to be if we want
to build a (O(n), O(1)) RMQ structure?

Formulate a hypothesis!
Discuss with your
neighbors!




The Limits of Hybrids

The preprocessing time on a hybrid structure is
O(n + pi1(n/b) + (n/ b) p2(b)).
The query time is
O(qi(n / b) + q=(b)).

What do pz2(b) and gz2(b) need to be if we want
to build a (O(n), O(1)) RMQ structure?

pz2(b) = O(b) qz(b) = O(1)

Problem: We can’t build an optimal RMQ
structure unless we already have one!

Or can we?



The Limits of Hybrids

The preprocessing time on a hybrid structure is
O(n + pi(n/b) + (n/ b) p2(b)).

T'he { This is the work required to
construct an RMQ
structure for each block.

Each block has size b.
Number of blocks: O(n / b).

)).

be if we want
cture?

) = 0(1)

Problem: We can’t build an optimal RMQ
structure unless we already have one!

Or can we?



A Key Difference

* Our original problem is

Solve RMQ on a single array in time
(0(n), O(1)).

 The new problem is

Solve RMQ on a large number of small
arrays with O(1) query time and total
preprocessing time O(n).

 These are not the same problem.

* Question: Why is this second problem any
easier than the first?
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An Observation

20 | 40 166 361 261 464

Claim: The indices of the
answers to any range
minimum queries on these
two arrays are the same.




Moditying RMQ

 From this point forward, let's have
RMQ,(i, j) denote the index of the

minimum value in the range rather than
the value itselt.

 Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

10 30 20 40 166 361 261 464




Where We're Going

« Suppose we use an (O(n log n), O(1)) sparse table for the top

and the (O(n?), O(1)) precompute-all structures for the blocks.

« However, whenever possible, we share block-level RMQ
structures across multiple blocks.

« Assuming there aren’t “too many” different types of blocks,
and assuming we can find and group blocks efficiently, this
overall strategy might let us reach a (O(n), O(1)) solution!

Summary
RMQ
A
22 119 43 35 11
22 129 55135 19 60|43 67 91144 35 53|74 71 11
: : |
Block-Level Block-Level Block-Level
RMQ RMQ RMQ

A




Two Big Questions



How can we tell when two blocks
can share RMQ structures?

How many block types are there,
as a function of b?



How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)
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as a function of b?



How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

(We need to tune b to ensure that many blocks are
shared. What value of b should we pick?)



The Adventure Begins!



Some Notation

Let B1 and B: be blocks of length b.

We'll say that B: and Bz have the same block
type (denoted B1 ~ B32) if the following holds:

Forall0 =i =j < b:
RMQy (i, j) = RMQ, (i, j)

Intuitively, the RMQ answers for B: are always
the same as the RMQ answers for Bo.

If we build an RMQ to answer queries on some
block Bi, we can reuse that RMQ structure on
some other block B: iff B1 ~ Bo.



Detecting Block Types

« For this approach to work, we need to be
able to check whether two blocks have the
same block type.

e Problem: Our formal definition of B1 ~ B2 is
defined in terms of RMQ.

* Not particularly usetul a priori; we don't want to
have to compute RMQ structures on B: and B: to
decide whether they have the same block type!

* Is there a simpler way to determine whether
two blocks have the same type?



An Initial Idea

» Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the

permutation types of the blocks.
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An Initial Idea

» Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the

permutation types of the blocks.
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 Claim: If B: and B2 have the same permutation
on their elements, then B:1 ~ Bo.




Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.



Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.

« All three of these blocks have the same block type
but different permutation types:

261 268 161 167 166 167 261 161 268 166 166 268 161 261 167

4 5 1 3 2 3 4 1 5 2 2 5 1 4 3

Discuss why with
your neighbor!
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« Problem Two: The number of possible
permutations of a block is b!.

* b has to be absolutely minuscule for b! to be small.
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Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.

« All three of these blocks have the same block type
but different permutation types:

261 268 161 167 166 167 261 161 268 166 166 268 161 261 167

4 5 1 3 2 3 4 1 5 2 2 5 1 4 3

« Problem Two: The number of possible
permutations of a block is b!.

* b has to be absolutely minuscule for b! to be small.
* [s there a better criterion we can use?




An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.
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An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.
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An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.
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14 22 11 43 | 35

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.
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An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166

14 22 11 43 | 35

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.



Cartesian Irees

A Cartesian tree for an array is
a binary tree built as follows:

* The root of the tree is the
minimum element of the array.

« Its left and right subtrees are
formed by recursively building
Cartesian trees for the
subarrays to the left and right
of the minimum.

 (Base case: if the array is
empty, the Cartesian tree is

empty.)

 This is mechanical description
of Cartesian trees; it defines
Cartesian trees by showing how
to make them.




Cartesian Irees

« A Cartesian tree can also be
defined as follows:

The Cartesian tree for an
array is a binary tree obeying
the min-heap property whose

inorder traversal gives back
the original array.

* This is called an operational
description; it says what
properties the tree has rather
than how to find it.

« Having multiple descriptions of
the same object is incredibly
useful - this will be a recurring
theme this quarter!




Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B2 iff B1 and B2 have i\somorphijc Cartesian trees.

“same
shape”

2 5 13 4 2 3 1 4 s




Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.
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recursive walk on the Cartesian tree.
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B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.
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Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

53
58

Gib:

53 58 97
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How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

\_(Y)_/



How quickly can we build a Cartesian tree?



Building Cartesian Trees

* Here's a naive algorithm for constructing Cartesian trees:

* Find the minimum value.

» Recursively build a Cartesian tree for the array to the left of the
minimum.

« Recursively build a Cartesian tree with the elements to the right
of the minimum.

e Return the overall tree.
« How efficient is this approach?

o}
a1 oo

®@ @

261 268 161 167 166




Building Cartesian Trees

» This algorithm works by

* doing a linear scan over the array to find the minimum value, then
e recursively processing the left and right halves on the array.

e This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n)=T(n, )+ T(nn.ght) + O(n)

left
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Building Cartesian Trees

This algorithm works by
* doing a linear scan over the array to find the minimum value, then
e recursively processing the left and right halves on the array.

This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleﬁ) + T(nn.ght) + O(n)
Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)

This is the same recurrence relation that comes up in the
analysis of quicksort!

« If the min is always in the middle, runtime is ©(n log n).
« If the min is always all the way to the side, runtime is G(n?).
Can we do better?
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A Better Approach

How fast is this new @
approach on an array of k @
elements?

Adding each element to
the tree might take time
O(k), since we may have
to pop O(k) elements off
the stack.

Since there are k 93 84 33 64 62 83 63 58

elements, that gives a
time bound of O(k?).

Question: Is this bound @
tight? @




A Better Approach

 Claim: This algorithm @
takes time O(Kk) on an @
array of size K.

« Idea: Each element is
pushed onto the stack at
most once, when it’s
created. Each element
can therefore be popped

at most once. 93 84 33 64 62 83 63 58

« Therefore, there are at
O(k) pushes and O(Kk)

pops, so the runtime is @
O(k). ;




How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!
But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?

\_(Y)_/



How many block types are there,
as a function of b?

(V) /I



Theorem: The number of distinct
Cartesian tree shapes for arrays ot
length b is at most 4°P.

In case you're curious, the actual number is

1
b+1

2b
b

J

which is roughly equal to

b3"? /x.

Look up the Catalan numbers for more information!



Proof Approach

* Our stack-based algorithm for generating
Cartesian trees produces a Cartesian
tree for every possible input array.

« Theretfore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

« Using a simple counting scheme, we can
show that there are at most 4° possible
executions.
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Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
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Cartesian Tree Numbers

 Two blocks can share an @
RMQ structure iff they
have the same Cartesian @
tree.

« Observation: If all we care
about is finding blocks that
can share RMQ structures,
we never need to build
Cartesian trees! Instead,
we can just compute the 93 84 33 64 62 83 63 58
Cartesian tree number for
each block.
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How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can compute these in time O(b)!
And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

At most 4°, because of the above algorithm!



Putting it all Together
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How Efficient is This?



We’'re using the hybrid approach,
and all the types we’re using have
constant query times.

Query time: O(1)



Our preprocessing time is

O(n + (n/ b) log (n/ b) + b2 4%)



Construct at most 4? block-
level RMQ structures at a
cost of O(b?) each.

Compute block minima;
compute Cartesian tree
numbers of each block.

Our preprocessing time is

O(n + (n/b) log (n/ b) + b? 47)

P’

Build a sparse
table on summary
array of size n/ b.




Our preprocessing time is

O(n + (n/ b) log (n/ b) + b> 4?)



This term grows
exponentially in n unless
we pick b = O(log n).

Our preprocessing time is

O(n + (n/ b) log n + b? 4%)

FT

This term will be
superlinear unless we
pick b = Q(log n).
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(n / legn) logn

Suppose we pick
b = k loga n
for some constant k.
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n
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Our preprocessing time is
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Our preprocessing time is
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Suppose we pick
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Our preprocessing time is

(log n)? n*

Suppose we pick
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Our preprocessing time is

O(n + n + (log n)* n'?)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.




Our preprocessing time is

O(n + n + n)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.




Our preprocessing time is

O(n)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.




The Fischer-Heun Structure

 This data structure is called the Fischer-Heun
structure. It uses a modified version of our hybrid

RMQ framework:
« Set b = Y2 logs n = Y4 logz n.

« Split the input into blocks of size b. Compute an array of
minimum values from each block.

» Build a sparse table on that array of minima.

» Build per-block RMQ structures for each block, using
Cartesian tree numbers to avoid recomputing RMQ
structures unnecessarily.

« Make queries using the standard hybrid solution
approach.

e This is an (O(n), O(1)) solution to RMQ!



The Method of Four Russians

* The technique employed here is an example of the
Method of Four Russians or a Four Russians
Speedup.

 Break the problem of size n into subproblems of size b, plus
some top-level problem of size n/ b.
- This is called a macro/micro decomposition.

« Solve all possible subproblems of size b.

- Here, we only solved the subproblems that actually came up in the
original array, but that’s just an optimization.

« Solve the overall problem by combining solutions to the
micro and macro problems.

 Think of it as “divide, precompute, and conquer.”

« Curious about the name? It comes from a paper by
Apnas3aposB, IuHaull, Kpoupoq, and ®apaaxkes.



More to Explore

e Lowest Common Ancestors

* Given a tree, preprocess the tree so that queries of the form
“what is the lowest common ancestor of these two nodes?” can

be answered as quickly as possible. This reduces to RMQ, and is
one of the main places it’s used.

 Succinct RMQ

e Our (O(n), O(1)) solution to RMQ uses only O(n) words of
memory. How few bits of memory are needed? Later work by

Fischer and Heun (and others!) has reduced this to 2n + o(n)
bits, using some very clever techniques.

« Durocher’'s RMQ Structure

« A professor teaching a data structures class found a way to solve
RMQ in time (O(n), O(1)) using some of the techniques we’ve
seen, but without needing the Four Russians speedup. The paper
is very accessible and shows off some really clever techniques.



Why Study RMQ?

* I chose RMQ as our first problem for a few reasons:

 See different approaches to the same problem. Each
approach we covered introduces some generalizable idea
that we’ll see later in the quarter.

 Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

 See the Method of Four Russians. This trick looks like
magic the first few times you see it and shows up in lots
of places.

 Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the field is still very active!

« So what's next?



Next Time

e Succinct Data Structures

* Solving problems with as few bits as
possible.

 Jacobson’s Rank Structure
* Binary prefix sums in shockingly low space.
» Iterated Logarithms

 When regular logarithms grow too fast.
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