Range Minimum Queries
Part Two

Recap from Last Time

The RMQ Problem

« The Range Minimum Query (RMQ)
problem is the following:

Given a fixed array A and two indices

I < j, what is the smallest element out of
Ali], Ali + 1], ..., Alj - 1], A[j]?

~I
31 41 59, 26 53 58 97 93
]

Some Notation

 We'll say that an RMQ data structure has time
complexity {(p(n), q(n)) if

* preprocessing takes time at most p(n) and
* queries take time at most qg(n).

« Last time, we saw structures with the following
runtimes:

O(n?), O(1)) (full preprocessing)

(n log n), O(1)) (sparse table)

O(n), O(n'?)) (blocking)
O(n), O(log n)) (hybrid approach)

(
(O
 (O(n log log n), O(1)) (hybrid approach)
(
(
(O(n), O(log log n)) (hybrid approach)

The Framework

« Split the input into blocks of size b.

 Form an array of the block minima.

* Construct a “summary” RMQ structure over the block minima.
 Construct “block” RMQ structures for each block.

 Aggregate the results together.

Summary
RMQ
31 26 23 62 27
31 1 41 59|26 53 58|97 93 23|84 62 64| 33 83 | 27
Block-Level Block-Level Block-Level Block-Level Block-Level
RMQ RMQ RMQ RMQ RMQ

The Framework

« Split the input into blocks of size b.

 Form an array of the block minima.

* Construct a “summary” RMQ structure over the block minima.
 Construct “block” RMQ structures for each block.

 Aggregate the results together.

Summary
RMQ
31 26 23 62 27
31 41 59|26 53 58|97 93 23|84 62 64| 33 83 27
Block-Level Block-Level Block-Level Block-Level Block-Level
RMQ RMQ RMQ RMQ RMQ

The Framework

« Split the input into blocks of size b.

 Form an array of the block minima.

* Construct a “summary” RMQ structure over the block minima.
 Construct “block” RMQ structures for each block.

 Aggregate the results together.

Summary
RMQ
31 | 26 23 62 | 27
31 41 59|26 53 58|97 93 23|84 62 64| 33 83 27
Block-Level Block-Level Block-Level Block-Level Block-Level
RMQ RMQ RMQ RMQ RMQ

The Framework

 Suppose we use a (pi(n), gi(n))-time RMQ solution
for the summary and a (pz(n), gz(n))-time RMQ
solution within each block. Let the block size be b.

* In the hybrid structure, the preprocessing time is

O(n + pa(n/ b) + (n/ b) p2(b))

Summary
RMQ
31 | 26 23 62 | 27
31 41 59|26 53 58|97 93 23|84 62 64| 33 83 27
Block-Level Block-Level Block-Level Block-Level Block-Level
RMQ RMQ RMQ RMQ RMQ

The Framework

 Suppose we use a (pi(n), gqi(n))-time RMQ solution
for the summary and a (pz(n), gz(n))-time RMQ
solution within each block. Let the block size be b.

* In the hybrid structure, the query time is

0O(q1(n / b) + q=(b))

Summary
RMQ
31 | 26 23 62 | 27
31 41 59|26 53 58|97 93 23|84 62 64| 33 83 27
Block-Level Block-Level Block-Level Block-Level Block-Level
RMQ RMQ RMQ RMQ RMQ

Is there an (O(n), O(1)) solution to RMQ?

Yes!

New Stuff!

An Observation

The Limits of Hybrids

* The preprocessing time on a hybrid structure is
O(n + pi(n/ b) + (n/ b) p2(b)).
 The query time is
O(qi(n / b) + qz(b)).

The Limits of Hybrids

 The preprocessing time on a hybrid structure is
O(n + pi(n/ b) + (n/ b) p2(b)).
 The query time is
O(qi(n / b) + qz(b)).

« What do pz2(b) and gz2(b) need to be if we want
to build a (O(n), O(1)) RMQ structure?

Formulate a hypothesis!
Discuss with your
neighbors!

The Limits of Hybrids

The preprocessing time on a hybrid structure is
O(n + pi1(n/b) + (n/ b) p2(b)).
The query time is
O(qi(n / b) + q=(b)).

What do pz2(b) and gz2(b) need to be if we want
to build a (O(n), O(1)) RMQ structure?

pz2(b) = O(b) qz(b) = O(1)

Problem: We can’t build an optimal RMQ
structure unless we already have one!

Or can we?

The Limits of Hybrids

The preprocessing time on a hybrid structure is
O(n + pi(n/b) + (n/ b) p2(b)).

T'he { This is the work required to
construct an RMQ
structure for each block.

Each block has size b.
Number of blocks: O(n / b).

)).

be if we want
cture?

) = 0(1)

Problem: We can’t build an optimal RMQ
structure unless we already have one!

Or can we?

A Key Difference

* Our original problem is

Solve RMQ on a single array in time
(0(n), O(1)).

 The new problem is

Solve RMQ on a large number of small
arrays with O(1) query time and total
preprocessing time O(n).

 These are not the same problem.

* Question: Why is this second problem any
easier than the first?

An Observation

10

30

20

40

166

361

261

464

An Observation

10

30 20 40

166

361 261 464

An Observation

10

30 20 40

1

166

361 261 464

1

An Observation

10

30

20

40

166

361

261

464

An Observation

10 30 @ 20 40 166 361 261 464

An Observation

10 30 @ 20 40 166 361 261 464

1) 1)

An Observation

10

30

20

40

166

361

261

464

An Observation

10 30 @ 20

40

166 361 261

464

An Observation

10 30 @ 20

40

166 361 261

464

1

An Observation

20 | 40 166 361 261 464

Claim: The indices of the
answers to any range
minimum queries on these
two arrays are the same.

Moditying RMQ

 From this point forward, let's have
RMQ,(i, j) denote the index of the

minimum value in the range rather than
the value itselt.

 Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

10 30 20 40 166 361 261 464

Where We're Going

« Suppose we use an (O(n log n), O(1)) sparse table for the top

and the (O(n?), O(1)) precompute-all structures for the blocks.

« However, whenever possible, we share block-level RMQ
structures across multiple blocks.

« Assuming there aren’t “too many” different types of blocks,
and assuming we can find and group blocks efficiently, this
overall strategy might let us reach a (O(n), O(1)) solution!

Summary
RMQ
A
22 119 43 35 11
22 129 55135 19 60|43 67 91144 35 53|74 71 11
: : |
Block-Level Block-Level Block-Level
RMQ RMQ RMQ

A

Two Big Questions

How can we tell when two blocks
can share RMQ structures?

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

(Without an answer, this whole approach doesn’t work!)

How many block types are there,
as a function of b?

(We need to tune b to ensure that many blocks are
shared. What value of b should we pick?)

The Adventure Begins!

Some Notation

Let B1 and B: be blocks of length b.

We'll say that B: and Bz have the same block
type (denoted B1 ~ B32) if the following holds:

Forall0 =i =j < b:
RMQy (i, j) = RMQ, (i, j)

Intuitively, the RMQ answers for B: are always
the same as the RMQ answers for Bo.

If we build an RMQ to answer queries on some
block Bi, we can reuse that RMQ structure on
some other block B: iff B1 ~ Bo.

Detecting Block Types

« For this approach to work, we need to be
able to check whether two blocks have the
same block type.

e Problem: Our formal definition of B1 ~ B2 is
defined in terms of RMQ.

* Not particularly usetul a priori; we don't want to
have to compute RMQ structures on B: and B: to
decide whether they have the same block type!

* Is there a simpler way to determine whether
two blocks have the same type?

An Initial Idea

» Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the

permutation types of the blocks.

31

41

59

16

18

3

27

18

28

66

73

84

12

66

26

60

22

14

72

99

27

An Initial Idea

» Since the elements of the array are ordered

and we're looking for the smallest value in
certain ranges, we might look at the

permutation types of the blocks.

31

41

59

16

18

3

1

2

3

2

3

1

27

18

28

66

73

84

12

2

5

66

26

6

2

1

3

3

3

2

60

22

14

72

99

27

3

2

1

An Initial Idea

» Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the

permutation types of the blocks.

31

41

59

16

18

3

1

3

2

1

3

2

2

3

1

27

18

28

66

73

84

66

26

6

2

1

3

1

2

3

3

2

1

60

22

14

72

99

27

3

2

1

2

3

1

 Claim: If B: and B2 have the same permutation
on their elements, then B:1 ~ Bo.

Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.

Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.

« All three of these blocks have the same block type
but different permutation types:

261 268 161 167 166 167 261 161 268 166 166 268 161 261 167

4 5 1 3 2 3 4 1 5 2 2 5 1 4 3

Discuss why with
your neighbor!

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have

« All three of these blocks have the same block type

Some Problems

different permutations but the same block type.

but different permutation types:

261

268

161

167

166

167

261

161

268

166

166

268

161

261

167

4

5

1

3

2

3

4

1

5

2

2

5

« Problem Two: The number of possible
permutations of a block is b!.

* b has to be absolutely minuscule for b! to be small.

1

4

3

Some Problems

 There are two main problems with this approach.

 Problem One: It's possible for two blocks to have
different permutations but the same block type.

« All three of these blocks have the same block type
but different permutation types:

261 268 161 167 166 167 261 161 268 166 166 268 161 261 167

4 5 1 3 2 3 4 1 5 2 2 5 1 4 3

« Problem Two: The number of possible
permutations of a block is b!.

* b has to be absolutely minuscule for b! to be small.
* [s there a better criterion we can use?

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

75

35

80

85

83

261

268

161

167

166

14

22

11

43

35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

75

35

80

85

83

261

268

161

167

166

14

22

11

43

35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

75

35

80

85

83

261

268

161

167

166

14

22

11

43

35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

75

35

80

85

83

261

268

161

167

166

14

22

11

43

35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166 6 5 3 9 7

14 22 11 43 | 35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166 6 5 3 9 7

14 22 11 43 | 35

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166 6 5 3 9 7

14 22 11 43 | 35

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 6 5

14 22

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 6 5

14 22

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 | 268 6 5

14 | 22

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 | 268

14 | 22

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 | 268

14 | 22

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

 Claim: If B1 ~ B2, the minimum elements of B:
and B2 must occur at the same position.

261 268 161 167 166

14 22 11 43 | 35

* Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

Cartesian Irees

A Cartesian tree for an array is
a binary tree built as follows:

* The root of the tree is the
minimum element of the array.

« Its left and right subtrees are
formed by recursively building
Cartesian trees for the
subarrays to the left and right
of the minimum.

 (Base case: if the array is
empty, the Cartesian tree is

empty.)

 This is mechanical description
of Cartesian trees; it defines
Cartesian trees by showing how
to make them.

Cartesian Irees

« A Cartesian tree can also be
defined as follows:

The Cartesian tree for an
array is a binary tree obeying
the min-heap property whose

inorder traversal gives back
the original array.

* This is called an operational
description; it says what
properties the tree has rather
than how to find it.

« Having multiple descriptions of
the same object is incredibly
useful - this will be a recurring
theme this quarter!

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B2 iff B1 and B2 have i\somorphijc Cartesian trees.

“same
shape”

2 5 13 4 2 3 1 4 s

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

O O

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

O O

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. B: and B2 have equal RMQs, so
corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97

Cartesian Trees and RMQ

« Theorem: Let B: and Bz be blocks of length b. Then
B1 ~ B: iff B1 and B2 have isomorphic Cartesian trees.

 Proof sketch:

* (=) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

53
58

Gib:

53 58 97

How can we tell when two blocks
can share RMQ structures?

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
But how do we check that?

How many block types are there,
as a function of b?

(Y)/

How quickly can we build a Cartesian tree?

Building Cartesian Trees

* Here's a naive algorithm for constructing Cartesian trees:

* Find the minimum value.

» Recursively build a Cartesian tree for the array to the left of the
minimum.

« Recursively build a Cartesian tree with the elements to the right
of the minimum.

e Return the overall tree.
« How efficient is this approach?

o}
a1 oo

®@ @

261 268 161 167 166

Building Cartesian Trees

» This algorithm works by

* doing a linear scan over the array to find the minimum value, then
e recursively processing the left and right halves on the array.

e This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n)=T(n,)+ T(nn.ght) + O(n)

left

Building Cartesian Trees

» This algorithm works by
* doing a linear scan over the array to find the minimum value, then
e recursively processing the left and right halves on the array.

e This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleﬁ) + T(nn.ght) + O(n)

 Question: What does this recurrence solve to? (Hint: where
have you seen this recurrence?)

Formulate a hypothesis!
Discuss with your
neighbors!

Building Cartesian Trees

This algorithm works by
* doing a linear scan over the array to find the minimum value, then
e recursively processing the left and right halves on the array.

This is a divide-and-conquer algorithm! Here’s a runtime
recurrence:

T(n) = T(nleﬁ) + T(nn.ght) + O(n)
Question: What does this recurrence solve to? (Hint: where

have you seen this recurrence?)

This is the same recurrence relation that comes up in the
analysis of quicksort!

« If the min is always in the middle, runtime is ©(n log n).
« If the min is always all the way to the side, runtime is G(n?).
Can we do better?

A Better Approach

» It's possible to build a
Cartesian tree over an @
array of length k faster

than the naive @ @

algorithm.

 High-level idea: Build @ @ @
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83
three, then the first
four, etc.

A Better Approach

» It's possible to build a
Cartesian tree over an @
array of length k faster

than the naive @ @

algorithm.
 High-level idea: Build @ @ @
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83 63

three, then the first
four, etc.

A Better

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first

Approach

(33
39 (62
®: @ 6

93 84 33 64 62 83 63

four, etc.

Observation 1: After adding this

node, it must be the rightmost node
in the tree. (An inorder traversal of

a Cartesian tree gives back the
original array.)

A Better

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first

Approach

33
62,
63

93 84 33 64 62 83 63

four, etc.

Observation 1: After adding this

node, it must be the rightmost node
in the tree. (An inorder traversal of

a Cartesian tree gives back the
original array.)

A Better Approach

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

33
62,
63

93 84 33 64 62 83 63

Observation 2: Cartesian

trees are min-heaps (each

node’s value is at least as
large as its parent’s).

A Better Approach

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

33
62
63

93 84 33 64 62 83 63

Observation 2: Cartesian

trees are min-heaps (each

node’s value is at least as
large as its parent’s).

A Better Approach

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

93 84 33 64 62 83 63

Observation 2: Cartesian

trees are min-heaps (each

node’s value is at least as
large as its parent’s).

A Better Approach

» It's possible to build a
Cartesian tree over an
array of length k faster
than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first
three, then the first
four, etc.

33
62
63

93 84 33 64 62 83 63

Observation 2: Cartesian

trees are min-heaps (each

node’s value is at least as
large as its parent’s).

A Better Approach

» It's possible to build a
Cartesian tree over an @
array of length k faster
than the naive @
algorithm.

 High-level idea: Build @
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83 63 58
three, then the first
four, etc.

A Better Approach

» It's possible to build a

Cartesian tree over an
array of length k faster @
than the naive @
algorithm.

 High-level idea: Build @

a Cartesian tree for the

first element, then the

first two, then the first 93 84 33 64 62 83 63 58
three, then the first
four, etc.

A Better Approach

» It's possible to build a @
Cartesian tree over an
array of length k faster
than the naive @
algorithm.

 High-level idea: Build @
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83 63 58
three, then the first
four, etc.

A Better Approach

» It's possible to build a @
Cartesian tree over an @
array of length k faster
than the naive @
algorithm.

 High-level idea: Build @
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83 63 58
three, then the first
four, etc.

A Better Approach

» It's possible to build a @
Cartesian tree over an @
array of length k faster

than the naive
algorithm.

 High-level idea: Build
a Cartesian tree for the
first element, then the
first two, then the first 93 84 33 64 62 83 63 58
three, then the first
four, etc.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s :
left child.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s :
left child.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. --------------- .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 8433 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. --------------- .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 8433 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. --------------- .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way. @
 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. --------------- .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way. @
 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. : .

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. :

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. 3

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. § 3

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 8433 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 8433 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped
left child. E : @

A Better Approach

« We can implement this
algorithm efficiently by

maintaining a stack of the @
nodes in the right spine.
e Pop the stack until the new
value is no smaller than the
stack top (or the stack is @

empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. :

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped
left child. E : @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

« We can implement this
algorithm efficiently by

maintaining a stack of the @
nodes in the right spine.
* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is

empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child.

. ®

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child. i -

)

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is
empty). Remember the last

node popped this way. @
 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped
left child. E : @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

 Rewire the tree by

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s
left child.

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child.

. ®

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child. i -

)

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

* making the most-recently- e @
popped node the new node’s Last Popped ! @

left child. @

A Better Approach

« We can implement this
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last

node popped this way.

 Rewire the tree by

93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped
left child. E : @

A Better Approach

« We can implement this
algorithm efficiently by

maintaining a stack of the @

nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. :

A Better Approach

« We can implement this @
algorithm efficiently by

maintaining a stack of the
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. :

A Better Approach

« We can implement this @
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

* Pop the stack until the new @
value is no smaller than the
stack top (or the stack is @
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-
popped node the new node’s

left child. :

A Better Approach

« We can implement this @
algorithm efficiently by
maintaining a stack of the @
nodes in the right spine.

e Pop the stack until the new
value is no smaller than the
stack top (or the stack is
empty). Remember the last
node popped this way.

* Rewire the tree by 93 84 33 64 62 83 63 58

 making the stack top point to
the new node, and

 making the most-recently-

popped node the new node’s \ Last Popped * @
left child. @

A Better Approach

How fast is this new @
approach on an array of k @
elements?

Adding each element to
the tree might take time
O(k), since we may have
to pop O(k) elements off
the stack.

Since there are k 93 84 33 64 62 83 63 58

elements, that gives a
time bound of O(k?).

Question: Is this bound @
tight? @

A Better Approach

 Claim: This algorithm @
takes time O(Kk) on an @
array of size K.

« Idea: Each element is
pushed onto the stack at
most once, when it’s
created. Each element
can therefore be popped

at most once. 93 84 33 64 62 83 63 58

« Therefore, there are at
O(k) pushes and O(Kk)

pops, so the runtime is @
O(k). ;

How can we tell when two blocks
can share RMQ structures?

When those blocks have isomorphic Cartesian trees!
And we can check this in time O(b)!
But there are lots of pairs of blocks to check!

How many block types are there,
as a function of b?

(Y)/

How many block types are there,
as a function of b?

(V) /I

Theorem: The number of distinct
Cartesian tree shapes for arrays ot
length b is at most 4°P.

In case you're curious, the actual number is

1
b+1

2b
b

J

which is roughly equal to

b3"? /x.

Look up the Catalan numbers for more information!

Proof Approach

* Our stack-based algorithm for generating
Cartesian trees produces a Cartesian
tree for every possible input array.

« Theretfore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

« Using a simple counting scheme, we can
show that there are at most 4° possible
executions.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

popSs.

* Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

e This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

o

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

o

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the @
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

o

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the @
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

010

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

01011

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

01011

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©10110
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©10110
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©10110
&

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101101

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101101

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101101

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©101101

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop

everything from the stack). 93 84 33 64 62 83 63 58
 This number is the Cartesian
tree number of a block. @

(62
©1011011
&)

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block. @

(62
©1011011
&)

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the

end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

(62
©10110110

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the @

end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

(62
©10110110

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

(62
©10110110

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop

everything from the stack). 93 84 33 64 62 83 63 58
 This number is the Cartesian
tree number of a block. @

(62
©101101101
&)

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block. @

(62
0101101101
&)

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the

end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

(62
01011011010

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b @
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the

end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

010110110100 Q

Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b
pushes and no more than b

pops. @

 Represent the execution of the @
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

010110110100 Q

Cartesian Tree Numbers

 There are at most 2b stack
operations during the
execution of the algorithm: b
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

010110110100 Q

Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

(58
0101101101001

Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©01011011010010 Q

Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

©010110110100100

Cartesian Tree Numbers

 There are at most 2b stack @
operations during the
execution of the algorithm: b @
pushes and no more than b

pops.

 Represent the execution of the
algorithm as a 2b-bit number,
where 1 means “push” and O
means “pop.” We'll pad the
end with O's (pretend we pop
everything from the stack). 93 84 33 64 62 83 63 58

« This number is the Cartesian
tree number of a block.

1010110110100100| (44,452)

Cartesian Tree Numbers

 Two blocks can share an @
RMQ structure iff they
have the same Cartesian @
tree.

« Observation: If all we care
about is finding blocks that
can share RMQ structures,
we never need to build
Cartesian trees! Instead,
we can just compute the 93 84 33 64 62 83 63 58
Cartesian tree number for
each block.

1010110110100100| (44,452)

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

Treeless Tree Numbers

18

28

18

28

45

90

45

23

53

60

28

74

71

35

Treeless Tree Numbers

18

28

18

28

45

90

45

23

53

60

28

74

71

35

27

!

Treeless Tree Numbers

27

28

18

28

45

90

45

23

53

60

28

74

71

35

27

!

Treeless Tree Numbers

27

28

18

28

45

90

45

23

53

60

28

74

71

35

3t

Treeless Tree Numbers

27

28

18

28

45

90

45

23

53

60

28

74

71

35

18

10 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

10 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

28

1011

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

28

1011

Treeless Tree Numbers

27

18

28

28

45

90

45

23

53

60

28

74

71

35

18

10110

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

101101

Treeless Tree Numbers

27

18

28

18

45

90

45

23

53

60

28

74

71

35

18

18

101101

Treeless Tree Numbers

27

18

28

18

45

90

45

23

53

60

28

74

71

35

18

18

28

1011011

Treeless Tree Numbers

27

18

28

18

28

90

45

23

53

60

28

74

71

35

18

18

28

1011011

Treeless Tree Numbers

27

18

28

18

28

90

45

23

53

60

28

74

71

35

18

18

28

45

10110111

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

28

45

10110111

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

28

45

90

101101111

Treeless Tree Numbers

27

18

28

18

28

45

90

23

53

60

28

74

71

35

18

18

28

45

90

101101111

Treeless Tree Numbers

27

18

28

18

28

45

90

23

53

60

28

74

71

35

18

18

28

45

1011011110

Treeless Tree Numbers

27

18

28

18

28

45

90

23

53

60

28

74

71

35

18

18

28

45

45

10110111101

Treeless Tree Numbers

27

18

28

18

28

45

90

45

53

60

28

74

71

35

18

18

28

45

45

10110111101

Treeless Tree Numbers

27

18

28

18

28

45

90

45

53

60

28

74

71

35

18

18

28

45

101101111010

Treeless Tree Numbers

27

18

28

18

28

45

90

45

53

60

28

74

71

35

18

18

28

1011011110100

Treeless Tree Numbers

27

18

28

18

28

45

90

45

53

60

28

74

71

35

18

18

10110111101000

Treeless Tree Numbers

27

18

28

18

28

45

90

45

53

60

28

74

71

35

18

18

23

10110111101000 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

60

28

74

71

35

18

18

23

10110111101000 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

60

28

74

71

35

18

18

23

53

1011011110100011

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

28

74

71

35

18

18

23

53

1011011110100011

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

28

74

71

35

18

18

23

53

60

10110111101000111

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

74

71

35

18

18

23

53

60

10110111101000111

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

74

71

35

18

18

23

53

101101111010001110

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

74

71

35

18

18

23

10110111101000111060

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

74

71

35

18

18

23

28

10110111101000111068 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

71

35

18

18

23

28

10110111101000111068 1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

71

35

18

18

23

28

74

101101111010001110011

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

35

18

18

23

28

74

101101111010001110011

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

35

18

18

23

28

1011011110100011100110

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

35

18

18

23

28

71

10110111101000111001101

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

18

18

23

28

71

10110111101000111001101

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

18

18

23

28

101101111010001110011010

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

23

28

35

101101111010001110011010:1

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

23

28

10110111101000111001101010

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

23

101101111010001110011010100

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

18

1011011110100011100110101000

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

18

10110111101000111001101010000

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

101101111010001110011010100000

Treeless Tree Numbers

27

18

28

18

28

45

90

45

23

53

60

28

74

71

35

(770,238,112)

10110111101000111001101010002006

How can we tell when two blocks
can share RMQ structures?

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can compute these in time O(b)!

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can compute these in time O(b)!
And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

How can we tell when two blocks
can share RMQ structures?

When they have the same Cartesian tree number!
And we can compute these in time O(b)!
And it’s easier to store numbers than trees!

How many block types are there,
as a function of b?

At most 4°, because of the above algorithm!

Putting it all Together

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

111111

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101100

|

Block-level

RMQ

A

111111

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101100

|

Block-level

RMQ

A

111111

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101010

|

Block-level

RMQ

A

v

101100

111111

RMQ

Block-level}

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101010

|

Block-level

RMQ

A

%

v

101100

111111

RMQ

Block-level}

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101010

|

RMQ

Block-level %

A

v

101100

111111

RMQ

Block-level} <

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

000000

000001

101010

|

RMQ

Block-level %

A

v

101100

111111

RMQ

Block-level} <

(Sparse Table)

[Summary RMQ}

13

39

17

22

66

13

59

75

55

39

25

17

31

84

44

22

|

RMQ

Block-level %

v

RMQ

Block-level} <

How Efficient is This?

We’'re using the hybrid approach,
and all the types we’re using have
constant query times.

Query time: O(1)

Our preprocessing time is

O(n + (n/ b) log (n/ b) + b2 4%)

Construct at most 4? block-
level RMQ structures at a
cost of O(b?) each.

Compute block minima;
compute Cartesian tree
numbers of each block.

Our preprocessing time is

O(n + (n/b) log (n/ b) + b? 47)

P’

Build a sparse
table on summary
array of size n/ b.

Our preprocessing time is

O(n + (n/ b) log (n/ b) + b> 4?)

This term grows
exponentially in n unless
we pick b = O(log n).

Our preprocessing time is

O(n + (n/ b) log n + b? 4%)

FT

This term will be
superlinear unless we
pick b = Q(log n).

Our preprocessing time is

O(n+ (n/b)logn + b* 4")

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(n/b) log n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(n/ k loga n) log n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(n/ k logs n) log n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(n/log n) log n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(n / legn) logn

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

O(n+ n + b* 4")

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

b- 4"

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

b2 4k logs n

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

b2 4 logs nk

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

b? 4 teg: "

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

b? nk

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(k loga n)? nk

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(k logs n)? nk

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

(log n)? n*

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

O(n + n + (log n)? n®)

Suppose we pick
b = k loga n
for some constant k.

Our preprocessing time is

O(n + n + (log n)? n")

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.

Our preprocessing time is

O(n + n + (log n)* n'?)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.

Our preprocessing time is

O(n + n + n)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.

Our preprocessing time is

O(n)

Suppose we pick
b = k logs n Now, set k = Y.

for some constant k.

The Fischer-Heun Structure

 This data structure is called the Fischer-Heun
structure. It uses a modified version of our hybrid

RMQ framework:
« Set b = Y2 logs n = Y4 logz n.

« Split the input into blocks of size b. Compute an array of
minimum values from each block.

» Build a sparse table on that array of minima.

» Build per-block RMQ structures for each block, using
Cartesian tree numbers to avoid recomputing RMQ
structures unnecessarily.

« Make queries using the standard hybrid solution
approach.

e This is an (O(n), O(1)) solution to RMQ!

The Method of Four Russians

* The technique employed here is an example of the
Method of Four Russians or a Four Russians
Speedup.

 Break the problem of size n into subproblems of size b, plus
some top-level problem of size n/ b.
- This is called a macro/micro decomposition.

« Solve all possible subproblems of size b.

- Here, we only solved the subproblems that actually came up in the
original array, but that’s just an optimization.

« Solve the overall problem by combining solutions to the
micro and macro problems.

 Think of it as “divide, precompute, and conquer.”

« Curious about the name? It comes from a paper by
Apnas3aposB, IuHaull, Kpoupoq, and ®apaaxkes.

More to Explore

e Lowest Common Ancestors

* Given a tree, preprocess the tree so that queries of the form
“what is the lowest common ancestor of these two nodes?” can

be answered as quickly as possible. This reduces to RMQ, and is
one of the main places it’s used.

 Succinct RMQ

e Our (O(n), O(1)) solution to RMQ uses only O(n) words of
memory. How few bits of memory are needed? Later work by

Fischer and Heun (and others!) has reduced this to 2n + o(n)
bits, using some very clever techniques.

« Durocher’'s RMQ Structure

« A professor teaching a data structures class found a way to solve
RMQ in time (O(n), O(1)) using some of the techniques we’ve
seen, but without needing the Four Russians speedup. The paper
is very accessible and shows off some really clever techniques.

Why Study RMQ?

* I chose RMQ as our first problem for a few reasons:

 See different approaches to the same problem. Each
approach we covered introduces some generalizable idea
that we’ll see later in the quarter.

 Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

 See the Method of Four Russians. This trick looks like
magic the first few times you see it and shows up in lots
of places.

 Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the field is still very active!

« So what's next?

Next Time

e Succinct Data Structures

* Solving problems with as few bits as
possible.

 Jacobson’s Rank Structure
* Binary prefix sums in shockingly low space.
» Iterated Logarithms

 When regular logarithms grow too fast.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274

